Zellzyklus

Der Zellzyklus ist die Abfolge verschiedener Aktivitätsphasen zwischen den Teilungen eukaryotischer Zellen. Da der DNA-Gehalt einer Zelle bzw. eines Zellkerns bei der Teilung (Mitose) halbiert wird, muss er vor der nächsten Teilung wieder verdoppelt werden. Diese beiden Vorgänge werden als M-Phase und S-Phase (von Synthese) bezeichnet.

 

Zwischen ihnen liegen sogenannte Gap-Phasen (engl. Lücke): G1 und G2.

Phasen

Einzelne Phasen der Mitose

Nach Teilung der Mutterzelle beginnen die Tochterzellen die Interphase. In dieser Phase zwischen zwei Mitosen sind die einzelnen Chromosomen auch nach Anfärbung nicht als einzelne Einheiten zu erkennen.

 

Die Genaktivität steuert den Stoffwechsel der wachsenden Zelle. Ihr Zellkern entwickelt mindestens einen Nukleolus.

 

Wegen des Gehaltes an ribosomaler RNA sind Nukleoli Voraussetzung und Anzeichen für den zellulären Stoffwechsel. Ein wichtiger Prozess während der Interphase ist die Verdoppelung der Chromosomen.

 

Schema des Zellzyklus. M = Mitose-Phase. Die darauf folgende Interphase besteht aus G1, S und G2. Von G1 kann eine Zelle in den G0-Zustand wechseln.Dies geschieht während der Synthese- oder S-Phase. Ihr voraus geht die G1-Phase. Entsprechend folgt auf die S-Phase die G2-Phase.

G1-Phase

Die Bezeichnung G1-Phase kommt von gap (engl. Lücke, Abstand), da dies der Zeitraum zwischen Kernteilung und DNA-Synthese ist.
In dieser (postmitotischen bzw. präsynthetischen) Phase werden Zellbestandteile (Zytoplasma, Zellorganelle) ergänzt. Die Produktion von mRNAs für Histone und Replikationsenzyme (DNA-Polymerasen, Ligasen) ist Voraussetzung für die bevorstehende S-Phase. Aus dem gleichen Grund steigt der Vorrat an Desoxyribonukleosid-Triphosphaten. Im Zytoplasma tierischer Zellen trennen sich die beiden Zentriolen voneinander.

Jedes Chromosom besteht aus nur einer Chromatide bzw. einer DNA-Helix. Der DNA-Gehalt der G1-Zelle kann mittels DNA-Zytometrie als 2 C bestimmt werden. Der C-Wert steht für die Größe des (haploiden) Genoms eines Organismus.
  • Zellen wechseln von der G1-Phase in die G0-Phase, wenn keine weitere Vermehrung der Zelle bevorsteht (ruhende Zelle). Es kann sich dabei um Zellen handeln, die sich nie wieder teilen werden, wie Nervenzellen und Muskelzellen der gestreiften Muskulatur. Andere Zelltypen verbleiben nach ihrer Ausdifferenzierung für Wochen oder Monate in G0, können aber bei besonderen Ereignissen wie Verletzung oder Zellverlust wieder zum G1-Zustand zurückkehren und sich nachfolgend teilen. Beispiele hierfür sind Leberzellen (Hepatozyten) und Lymphozyten.

S-Phase

steht für Synthesephase, wegen der Verdopplung der DNA im Zellkern. Ausgelöst von genetischen Signalen, beginnt in jedem Chromosom an mehreren Ursprüngen die Replikation, die Verdoppelung der DNA-Helix. Aus dem Zytoplasma gelangen entsprechende Mengen neuer Histone in den Zellkern, welche die replizierte DNA verpacken. Auch die Zentriolen verdoppeln sich.

Die S-Phase endet, sobald die DNA-Verdopplung abgeschlossen ist und jedes Chromosom aus zwei Chromatiden besteht. Die DNA-Menge steigt in dieser Phase von 2 C auf 4 C.

G2-Phase

In diesem (postsynthetischen bzw. prämitotischen) Intervall werden RNA-Moleküle und zellteilungsspezifische Proteine synthetisiert, um die nachfolgende Mitose vorzubereiten.
Das Endoplasmatische Retikulum wird eingeschmolzen. In Geweben lösen sich die Kontakte zu den Nachbarzellen; die Zelle rundet sich ab und vergrößert sich durch Flüssigkeitsaufnahme.

M-Phase

oder Mitose-Phase: Hier finden die Zweiteilungen der Chromosomen (Mitose), des Zellkernes (Karyokinese) und der Zelle (Zytokinese) statt. Während der Mitose folgen aufeinander: Prophase, Prometaphase, Metaphase, Anaphase und Telophase, die Zellteilung beginnt meist schon parallel zu den letzten Phasen der Mitose. Durch die Zellteilung halbiert sich die DNA-Menge von 4 C wieder auf 2 C.
  • Wird keine Zellteilung durchgeführt und die DNA-Menge weiter verdoppelt, spricht man von Endoreplikationen. Genutzt wird dies in manchen Hochleistungszellen für erhöhte Proteinbiosynthese