Die Rayleigh-Streuung

Die Rayleigh-Streuung, benannt nach John William Strutt, 3. Baron Rayleigh, bezeichnet die (hauptsächlich) elastische Streuung elektromagnetischer Wellen an Teilchen, deren Durchmesser klein im Vergleich zur Wellenlänge λ  ist, also etwa bei der Streuung von Licht an kleinen Molekülen.

Bei Streuung in der Erdatmosphäre an molekularem Sauerstoff und Stickstoff wird typischerweise auch die inelastische Komponente durch Rotationsramanstreuung mit zur Rayleigh-Streuung gezählt, da diese nur eine Verschiebung der Wellenzahl des Photons um weniger als 50 cm−1 bewirkt.

 

Der Wirkungsquerschnitt dieses Beitrags hat die gleiche Wellenlängenabhängigkeit wie die elastische Komponente.

 

Der Streuquerschnitt σ der Rayleigh-Streuung ist proportional zur vierten Potenz der Frequenz f der elektromagnetischen Welle.

 

Dies gilt nicht nur für unabhängig streuende Teilchen, also bei Teilchenabständen größer als die Kohärenzlänge der Strahlung, sondern auch bei höherer Teilchenkonzentration für die Streuung an Inhomogenitäten des Brechungsindex durch eine statistische Anordnung der Teilchen, beispielsweise in Gasen oder Gläsern.

 

Blaues Licht hat eine höhere Frequenz als rotes und wird daher stärker gestreut.

 
Auch die zunehmende Mondsichel erscheint rötlich, wenn sie nur wenige Grad über dem Horizont steht. Das Mondlicht gelangt nun erst nach einer längeren Passage von über 200 Kilometern durch die Erdatmosphäre zum Beobachter.
 

Die frequenzabhängig unterschiedlich starke Streuung von Sonnenlicht an den Teilchen der Erdatmosphäre bewirkt das Himmelsblau am Tag, und die Morgenröte wie die Abendröte während der Dämmerung. Dicht über dem Horizont stehend erscheint ebenso der Mond rötlich.

 
Rayleigh-gestreutes Licht ist polarisiert, besonders stark bei Streuwinkeln von 90°. Das linke Bild ist ohne, das rechte mit einem Polarisationsfilter in Sperrrichtung aufgenommen.

Rayleigh-Streuung tritt auf, da das einfallende Licht die Elektronen eines Moleküls anregt und ein Dipolmoment induziert, welches genauso schwingt wie die einfallende elektromagnetische Strahlung.

 

Das induzierte Dipolmoment wirkt nun wie ein Hertzscher Dipol und sendet Licht aus, das dieselbe Wellenlänge wie das einfallende Licht besitzt.